首页> 外文OA文献 >Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates
【2h】

Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates

机译:基于maTLaB的秩结构矩阵的高效算术运算   分级低级别更新

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many matrices appearing in numerical methods for partial differentialequations and integral equations are rank-structured, i.e., they containsubmatrices that can be approximated by matrices of low rank. A relativelygeneral class of rank-structured matrices are $\mathcal{H}^2$-matrices: theycan reach the optimal order of complexity, but are still general enough for alarge number of practical applications. We consider algorithms for performingalgebraic operations with $\mathcal{H}^2$-matrices, i.e., for approximating thematrix product, inverse or factorizations in almost linear complexity. The newapproach is based on local low-rank updates that can be performed in linearcomplexity. These updates can be combined with a recursive procedure toapproximate the product of two $\mathcal{H}^2$-matrices, and these products canbe used to approximate the matrix inverse and the LR or Cholesky factorization.Numerical experiments indicate that the new method leads to preconditionersthat require $\mathcal{O}(n)$ units of storage, can be evaluated in$\mathcal{O}(n)$ operations, and take $\mathcal{O}(n \log n)$ operations to setup.
机译:用于偏微分方程和积分方程的数值方法中出现的许多矩阵都是秩结构的,即它们包含可以被低阶矩阵近似的矩阵。等级结构矩阵的相对一般类别是$ \ mathcal {H} ^ 2 $-矩阵:它们可以达到最佳的复杂度顺序,但对于许多实际应用仍然足够通用。我们考虑使用$ \ mathcal {H} ^ 2 $矩阵执行代数运算的算法,即近似线性复杂度的矩阵乘积,逆或因式分解。新方法基于可以以线性复杂度执行的本地低等级更新。这些更新可以与递归过程相结合,以近似两个$ \ mathcal {H} ^ 2 $矩阵的乘积,并且这些乘积可以用于近似矩阵逆和LR或Cholesky分解。数值实验表明,新方法导致需要$ \ mathcal {O}(n)$个存储单位的预处理器,可以在$ \ mathcal {O}(n)$个操作中进行评估,并进行$ \ mathcal {O}(n \ log n)$个操作建立。

著录项

  • 作者

    Börm, Steffen; Reimer, Knut;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号